Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(4): e1011800, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656994

RESUMEN

Biochemical signaling pathways in living cells are often highly organized into spatially segregated volumes, membranes, scaffolds, subcellular compartments, and organelles comprising small numbers of interacting molecules. At this level of granularity stochastic behavior dominates, well-mixed continuum approximations based on concentrations break down and a particle-based approach is more accurate and more efficient. We describe and validate a new version of the open-source MCell simulation program (MCell4), which supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of discrete molecules and macromolecular complexes in solution, on surfaces representing membranes, and combinations thereof. The main improvements in MCell4 compared to the previous versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen reaction language (BNGL) support. MCell4's Python interface opens up completely new possibilities for interfacing with external simulators to allow creation of sophisticated event-driven multiscale/multiphysics simulations. The native BNGL support, implemented through a new open-source library libBNG (also introduced in this paper), provides the capability to run a given BNGL model spatially resolved in MCell4 and, with appropriate simplifying assumptions, also in the BioNetGen simulation environment, greatly accelerating and simplifying model validation and comparison.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37200895

RESUMEN

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. The first set of more basic tutorials describes a range of simulation types, from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding. The second set ecompasses six advanced tutorials instructing users in the best practices of using key new features and plugins/extensions of the WESTPA 2.0 software package, which consists of major upgrades for larger systems and/or slower processes. The advanced tutorials demonstrate the use of the following key features: (i) a generalized resampler module for the creation of "binless" schemes, (ii) a minimal adaptive binning scheme for more efficient surmounting of free energy barriers, (iii) streamlined handling of large simulation datasets using an HDF5 framework, (iv) two different schemes for more efficient rate-constant estimation, (v) a Python API for simplified analysis of WE simulations, and (vi) plugins/extensions for Markovian Weighted Ensemble Milestoning and WE rule-based modeling for systems biology models. Applications of the advanced tutorials include atomistic and non-spatial models, and consist of complex processes such as protein folding and the membrane permeability of a drug-like molecule. Users are expected to already have significant experience with running conventional molecular dynamics or systems biology simulations.

3.
Chem Sci ; 10(8): 2360-2372, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30881664

RESUMEN

A grand challenge in the field of biophysics has been the complete characterization of protein-protein binding processes at atomic resolution. This characterization requires the direct simulation of binding pathways starting from the initial, unbound state and proceeding through states that are too transient to be captured by experiment. Here, we applied the weighted ensemble path sampling strategy to orchestrate atomistic simulation of protein-protein binding pathways. Our simulation generated 203 fully-continuous and independent pathways along with rate constants for the binding process involving the barnase and barstar proteins. Results reveal multiple binding pathways along a "funnel-like" free energy landscape in which the formation of the "encounter complex" intermediate is rate-limiting followed by a relatively rapid rearrangement of the encounter complex to the bound state. Among all diffusional collisions, only ∼11% were productive. In the most probable binding pathways, the proteins rotated to a large extent (likely via electrostatic steering) in order to collide productively followed by "rolling" of the proteins along each other's binding interfaces to reach the bound state. Consistent with experiment, R59 was identified as the most kinetically important barnase residue for the binding process. Furthermore, protein desolvation occurs late in the binding process during the rearrangement of the encounter complex to the bound state. Notably, the positions of crystallographic water molecules that bridge hydrogen bonds between barnase and barstar are occupied in the bound-state ensemble. Our simulation was completed in a month using 1600 CPU cores at a time, demonstrating that it is now practical to carry out atomistic simulations of protein-protein binding.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32395705

RESUMEN

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. Users are expected to already have significant experience with running standard molecular dynamics simulations using the underlying dynamics engine of interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding.

5.
Curr Opin Struct Biol ; 43: 88-94, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27984811

RESUMEN

Despite more than three decades of effort with molecular dynamics simulations, long-timescale (ms and beyond) biologically relevant phenomena remain out of reach in most systems of interest. This is largely because important transitions, such as conformational changes and (un)binding events, tend to be rare for conventional simulations (<10µs). That is, conventional simulations will predominantly dwell in metastable states instead of making large transitions in complex biomolecular energy landscapes. In contrast, path sampling approaches focus computing effort specifically on transitions of interest. Such approaches have been in use for nearly 20 years in biomolecular systems and enabled the generation of pathways and calculation of rate constants for ms processes, including large protein conformational changes, protein folding, and protein (un)binding.


Asunto(s)
Modelos Moleculares , Proteínas/química , Conformación Proteica , Pliegue de Proteína , Proteínas/metabolismo
6.
J Phys Chem B ; 120(1): 117-22, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26673903

RESUMEN

An essential baseline for determining the extent to which electrostatic interactions enhance the kinetics of protein-protein association is the "basal" kon, which is the rate constant for association in the absence of electrostatic interactions. However, since such association events are beyond the milliseconds time scale, it has not been practical to compute the basal kon by directly simulating the association with flexible models. Here, we computed the basal kon for barnase and barstar, two of the most rapidly associating proteins, using highly efficient, flexible molecular simulations. These simulations involved (a) pseudoatomic protein models that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom models, and (b) application of the weighted ensemble path sampling strategy, which enhanced the efficiency of generating association events by >130-fold. We also examined the extent to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic interactions in the simulations.


Asunto(s)
Modelos Moleculares , Proteínas/química , Difusión , Hidrodinámica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...